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Introduction 
A popular subset of platforming-type 

games are infinite runners in which the player 
traverses a world that is endless and can only 
end when the player enters a fail state. In 
order to support and infinite world, the 
environment needs to be generated during 
runtime and must create objects some 
distance ahead of the player. Generally, these 
types of games randomly generate premade 
sections of platforms with some preference to 
sections that were rated as more or less 
difficult by the game designer. The purpose 
of this project was to attempt a different 
approach of platform generation in which a 
reinforcement learning agent learns the 
strengths and weaknesses of individual 
players and can cater a more interesting 
experience by creating a challenge that is 
specific to the skill of every player.  

1. Resources 
The purpose of this project was to 

experiment with machine learning techniques 
in an infinite runner game. Due to the limited 
time frame, an open source project was used 
so that there was no focus on the development 
of the core mechanics of the game.  

2. Block Generation 

The source had easily modifiable block 
generation code that allowed individual 
platforms to be instantiated in the world. 
These modifications included generating 
random widths and heights between blocks. 
Depending on a difficulty factor, the range of 
width and height differed making challenging 
jumps when the difficulty is high and easy 
jumps when the difficulty is low. The 
platforms themselves were pre-made sections 
of blocks that were chosen one at a time using 
a weighted probability.  

2.1 Bock Features 

5 features were determined to be the 
most difficult features of blocks that can 
occur:  

1. Far Jump: Distance to next block is 
greater than half of the maximum 
block distance. 

2. High Jump: Height to next block is 
greater than half of the maximum 
block height. 

3. Below: Block is below the previous. 
4. Narrow: Block is 1 or 2 tiles wide. 
5. Has Enemy: There is an enemy on the 

block. 

When a block is spawned, each feature that 
could apply to a block is considered. Each 
feature has its own probability associated 
with it that is determined using the number of 



times the player has succeeded or failed on 
that feature. 

3. Player Performance 
3.1 Difficulty Management 

When a player is doing well, it makes 
sense to present them with a more difficult 
challenge. Therefore, the performance of the 
player needed to be tracked. Criteria that 
determine the player’s success are the 
average speed of the player, the time spent on 
each block, and the distance the player has 
traveled.  

3.2 Block Probabilities 

When a player successfully completes a 
jump or dies, the probabilities of each type of 
block is updated. The features on the block 
that is associated with a success or failure are 
added to the total success or failure counts for 
each feature that was present on that block. 
These success and failure counts are used to 
determine the probability of those features 
appearing on subsequent blocks. These 
probabilities give insight on the type of 
blocks that the player is good and bad at 
which are utilized so that the player is 
presented with blocks in which they are 
skilled when the difficulty is low, and they 
are presented with blocks they are not skilled 
in when the difficulty is high. 

4. Testing Block Generation 
Over time, it is expected that once the 

block management has learned what type of 
blocks the player is good and bad at, the 
better the player will perform because they 
are being presented with challenges that they 
are capable of completing in the beginning of 
the game. Also, it is expected that the 
frequency of the feature in which the player 
is not skilled will appear will decrease. To 

test these hypotheses, an agent was devised 
to play the game. 

4.1 Agent Details 

An agent was created that somewhat 
resembled human gameplay. It runs as long 
as it is grounded to a platform, and it jumps if 
it is about to run off. The agent is also capable 
of slowing itself down if it is about to 
overshoot a jump. This agent was vital to 
initial testing of the application of the block 
probabilities and the general use of the 
machine learning block generator, however, 
running the agent in real time was slow and a 
quicker testing environment was necessary 
for determining the effectiveness of the block 
generation. This was achieved by replicating 
the environment in a terminal-based setting. 

4.2 Terminal-Based Testing 

Using the same algorithms that 
determined the probabilities of the blocks and 
the selection of the sequence of blocks, a 
terminal-based environment was created. In 
this environment, the agent is presented with 
a block with features that are determined by 
their previous performance on blocks with 
similar features and are more or less aligned 
with the specific skill of the agent depending 
on the difficulty factor. The agent is given 5 
skills, each correlating to the features that can 
appear on a given block: far, high, below, 
narrow, and enemy. These skills are assigned 
a value 0 to 1 that act as the probability of the 
agent succeeding on a jump given that the 
block has the feature correlating to that skill. 
Since not all blocks will always have all 5 of 
the features, skills relevant only to features 
that are present on the block will be taken into 
account, summed and averaged. For 
example, a block has the features far and 
enemy. The agent has a probability of success 
of 0 for far jumps and a probability of success 



of 1 for blocks with enemies. The total 
probability of the agent completing this block 
is 0.5. 

In a specific test, an agent was given the 
following probabilities of success for each 
feature: P(far) = 0, P(high) = 1, P(below) = 1, 
P(narrow) = 1, and P(enemy) = 1. The agent 
simulated running through the environment 
one block until it fails or 100 blocks have 
been completed. It is expected that as the 
agent completes a run, the block manager 
will generate blocks that cater to the specific 
skills of the agent. In this case, it is expected 
that over time there are significantly less 

blocks labeled as a far jump than any other 
label. This experiment was conducted 
without any difficulty adjustment to increase 
the likelihood of the observing blocks that the 
agent is not skilled in. A second experiment 
to act as a comparison is set up the same as 
the first, but without updating the 
probabilities of the features of the blocks, 
meaning the features observed on blocks is 
always random. This will act as a measure to 
truly see the results of the effects of the 
machine learning block manager. Each 
scenario ran the agent through the simulation 
5000 times.

5. Results 
The following graphs show the results of the runs made by the agent with the machine 

learning block manager, and without. 

 

The graph above are the results of the controlled test where the agent ran the simulation 5000 times 
without the block manager updating the probabilities of each feature appearing on the blocks. The 
graph represents the proportion of the blocks in each run that were classified as a ‘far’ jump. This 
data shows that over time, the proportion of blocks that were classified as far did not change and 
on average the proportion of blocks classified as ‘far’ was 0.54. This is reasonable because there 
were no modifications to the proportions at which features should appear. On average, agents in 
this test completed 9.14 successive blocks. 
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The graph above shows the results of the agent completing 5000 runs with the machine learning 
block manager active and updating the probability of assigning a feature to a block dependent upon 
the number of agent successes and failures on each block feature. It is clear that over time, the 
proportion of ‘far’ blocks decreased at a steady rate. In total, the proportion of far blocks decreased 
by 0.2. On average, the proportion of ‘far’ blocks for a run was 0.30, which is 0.24 less than when 
the machine learning block manager is not applied. So, it is clear that the block manager was 
working as intended in terms of accommodating the skillset of the agent. Also, the average number 
of blocks the agent successfully completed was 20.97, which is about twice as much as without 
the machine learning disabled.  

These results show that not only is the machine learning block manager spawning less of the blocks 
that the agent is not skilled in, but as a result, the blocks spawned result in a dramatic improvement 
in agent performance.

 

6. Future Work 
 
It should be noted that the increase in 

performance is great after 5000 plays of 
the game. For an agent, this is trivial, but 
not many humans are willing to play the 
same game 5000 or more times. The 
unfortunate drawback of machine 

learning is that a lot of data is required to 
make a difference. A potential solution to 
this problem is to gather data from a 
human’s run, then simulate additional 
runs with an agent that is similar in skill 
to the human so that more data can be 
collected to contribute to the 
effectiveness of the block manager. Also, 
the game is currently in a state that all 
blocks are fairly simple which is not very 
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interesting. Additional content such as 
new enemies, block terrain, and other 

obstacles would be more fun and 
engaging for players. 

 


