
Procedural Platform Generation Management Using
Machine Learning

Michael Probst
University of Kentucky, Lexington, KY USA

mppr222@uky.edu
GitHub project repository

Introduction
A popular subset of platforming-type

games are infinite runners in which the player
traverses a world that is endless and can only
end when the player enters a fail state. In
order to support and infinite world, the
environment needs to be generated during
runtime and must create objects some
distance ahead of the player. Generally, these
types of games randomly generate premade
sections of platforms with some preference to
sections that were rated as more or less
difficult by the game designer. The purpose
of this project was to attempt a different
approach of platform generation in which a
reinforcement learning agent learns the
strengths and weaknesses of individual
players and can cater a more interesting
experience by creating a challenge that is
specific to the skill of every player.

1. Resources
The purpose of this project was to

experiment with machine learning techniques
in an infinite runner game. Due to the limited
time frame, an open source project was used
so that there was no focus on the development
of the core mechanics of the game.

2. Block Generation

The source had easily modifiable block
generation code that allowed individual
platforms to be instantiated in the world.
These modifications included generating
random widths and heights between blocks.
Depending on a difficulty factor, the range of
width and height differed making challenging
jumps when the difficulty is high and easy
jumps when the difficulty is low. The
platforms themselves were pre-made sections
of blocks that were chosen one at a time using
a weighted probability.

2.1 Bock Features

5 features were determined to be the
most difficult features of blocks that can
occur:

1. Far Jump: Distance to next block is
greater than half of the maximum
block distance.

2. High Jump: Height to next block is
greater than half of the maximum
block height.

3. Below: Block is below the previous.
4. Narrow: Block is 1 or 2 tiles wide.
5. Has Enemy: There is an enemy on the

block.

When a block is spawned, each feature that
could apply to a block is considered. Each
feature has its own probability associated
with it that is determined using the number of

times the player has succeeded or failed on
that feature.

3. Player Performance
3.1 Difficulty Management

When a player is doing well, it makes
sense to present them with a more difficult
challenge. Therefore, the performance of the
player needed to be tracked. Criteria that
determine the player’s success are the
average speed of the player, the time spent on
each block, and the distance the player has
traveled.

3.2 Block Probabilities

When a player successfully completes a
jump or dies, the probabilities of each type of
block is updated. The features on the block
that is associated with a success or failure are
added to the total success or failure counts for
each feature that was present on that block.
These success and failure counts are used to
determine the probability of those features
appearing on subsequent blocks. These
probabilities give insight on the type of
blocks that the player is good and bad at
which are utilized so that the player is
presented with blocks in which they are
skilled when the difficulty is low, and they
are presented with blocks they are not skilled
in when the difficulty is high.

4. Testing Block Generation
Over time, it is expected that once the

block management has learned what type of
blocks the player is good and bad at, the
better the player will perform because they
are being presented with challenges that they
are capable of completing in the beginning of
the game. Also, it is expected that the
frequency of the feature in which the player
is not skilled will appear will decrease. To

test these hypotheses, an agent was devised
to play the game.

4.1 Agent Details

An agent was created that somewhat
resembled human gameplay. It runs as long
as it is grounded to a platform, and it jumps if
it is about to run off. The agent is also capable
of slowing itself down if it is about to
overshoot a jump. This agent was vital to
initial testing of the application of the block
probabilities and the general use of the
machine learning block generator, however,
running the agent in real time was slow and a
quicker testing environment was necessary
for determining the effectiveness of the block
generation. This was achieved by replicating
the environment in a terminal-based setting.

4.2 Terminal-Based Testing

Using the same algorithms that
determined the probabilities of the blocks and
the selection of the sequence of blocks, a
terminal-based environment was created. In
this environment, the agent is presented with
a block with features that are determined by
their previous performance on blocks with
similar features and are more or less aligned
with the specific skill of the agent depending
on the difficulty factor. The agent is given 5
skills, each correlating to the features that can
appear on a given block: far, high, below,
narrow, and enemy. These skills are assigned
a value 0 to 1 that act as the probability of the
agent succeeding on a jump given that the
block has the feature correlating to that skill.
Since not all blocks will always have all 5 of
the features, skills relevant only to features
that are present on the block will be taken into
account, summed and averaged. For
example, a block has the features far and
enemy. The agent has a probability of success
of 0 for far jumps and a probability of success

of 1 for blocks with enemies. The total
probability of the agent completing this block
is 0.5.

In a specific test, an agent was given the
following probabilities of success for each
feature: P(far) = 0, P(high) = 1, P(below) = 1,
P(narrow) = 1, and P(enemy) = 1. The agent
simulated running through the environment
one block until it fails or 100 blocks have
been completed. It is expected that as the
agent completes a run, the block manager
will generate blocks that cater to the specific
skills of the agent. In this case, it is expected
that over time there are significantly less

blocks labeled as a far jump than any other
label. This experiment was conducted
without any difficulty adjustment to increase
the likelihood of the observing blocks that the
agent is not skilled in. A second experiment
to act as a comparison is set up the same as
the first, but without updating the
probabilities of the features of the blocks,
meaning the features observed on blocks is
always random. This will act as a measure to
truly see the results of the effects of the
machine learning block manager. Each
scenario ran the agent through the simulation
5000 times.

5. Results
The following graphs show the results of the runs made by the agent with the machine

learning block manager, and without.

The graph above are the results of the controlled test where the agent ran the simulation 5000 times
without the block manager updating the probabilities of each feature appearing on the blocks. The
graph represents the proportion of the blocks in each run that were classified as a ‘far’ jump. This
data shows that over time, the proportion of blocks that were classified as far did not change and
on average the proportion of blocks classified as ‘far’ was 0.54. This is reasonable because there
were no modifications to the proportions at which features should appear. On average, agents in
this test completed 9.14 successive blocks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pr
op

or
tio

n	
of
	'F
ar
'	B
lo
ck
s

Run	Number

Percent	Far	Blocks	Without	Difficulty	Increase	and	ML	Disabled	for	Agent	
that	is	not	Skilled	in	Far	Jumps

The graph above shows the results of the agent completing 5000 runs with the machine learning
block manager active and updating the probability of assigning a feature to a block dependent upon
the number of agent successes and failures on each block feature. It is clear that over time, the
proportion of ‘far’ blocks decreased at a steady rate. In total, the proportion of far blocks decreased
by 0.2. On average, the proportion of ‘far’ blocks for a run was 0.30, which is 0.24 less than when
the machine learning block manager is not applied. So, it is clear that the block manager was
working as intended in terms of accommodating the skillset of the agent. Also, the average number
of blocks the agent successfully completed was 20.97, which is about twice as much as without
the machine learning disabled.

These results show that not only is the machine learning block manager spawning less of the blocks
that the agent is not skilled in, but as a result, the blocks spawned result in a dramatic improvement
in agent performance.

6. Future Work

It should be noted that the increase in

performance is great after 5000 plays of
the game. For an agent, this is trivial, but
not many humans are willing to play the
same game 5000 or more times. The
unfortunate drawback of machine

learning is that a lot of data is required to
make a difference. A potential solution to
this problem is to gather data from a
human’s run, then simulate additional
runs with an agent that is similar in skill
to the human so that more data can be
collected to contribute to the
effectiveness of the block manager. Also,
the game is currently in a state that all
blocks are fairly simple which is not very

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pr
op

or
tio

n	
of
	'F
ar
'	B
lo
ck
s

Run	Number

Percent	Far	Blocks	Without	Difficulty	Increase	and	ML	Enabled	for	Agent	
that	is	not	Skilled	in	Far	Jumps

interesting. Additional content such as
new enemies, block terrain, and other

obstacles would be more fun and
engaging for players.

